public class DefaultProcessModel extends Object implements ProcessModel
ProcessModel for the use with a
KalmanFilter.| Constructor and Description |
|---|
DefaultProcessModel(double[][] stateTransition,
double[][] control,
double[][] processNoise)
Create a new
ProcessModel, taking double arrays as input
parameters. |
DefaultProcessModel(double[][] stateTransition,
double[][] control,
double[][] processNoise,
double[] initialStateEstimate,
double[][] initialErrorCovariance)
Create a new
ProcessModel, taking double arrays as input
parameters. |
DefaultProcessModel(RealMatrix stateTransition,
RealMatrix control,
RealMatrix processNoise,
RealVector initialStateEstimate,
RealMatrix initialErrorCovariance)
Create a new
ProcessModel, taking double arrays as input
parameters. |
| Modifier and Type | Method and Description |
|---|---|
RealMatrix |
getControlMatrix()
Returns the control matrix.
|
RealMatrix |
getInitialErrorCovariance()
Returns the initial error covariance matrix.
|
RealVector |
getInitialStateEstimate()
Returns the initial state estimation vector.
|
RealMatrix |
getProcessNoise()
Returns the process noise matrix.
|
RealMatrix |
getStateTransitionMatrix()
Returns the state transition matrix.
|
public DefaultProcessModel(double[][] stateTransition,
double[][] control,
double[][] processNoise,
double[] initialStateEstimate,
double[][] initialErrorCovariance)
ProcessModel, taking double arrays as input
parameters.stateTransition - the state transition matrixcontrol - the control matrixprocessNoise - the process noise matrixinitialStateEstimate - the initial state estimate vectorinitialErrorCovariance - the initial error covariance matrixpublic DefaultProcessModel(double[][] stateTransition,
double[][] control,
double[][] processNoise)
ProcessModel, taking double arrays as input
parameters. The initial state estimate and error covariance are omitted
and will be initialized by the KalmanFilter to default values.stateTransition - the state transition matrixcontrol - the control matrixprocessNoise - the process noise matrixpublic DefaultProcessModel(RealMatrix stateTransition, RealMatrix control, RealMatrix processNoise, RealVector initialStateEstimate, RealMatrix initialErrorCovariance)
ProcessModel, taking double arrays as input
parameters.stateTransition - the state transition matrixcontrol - the control matrixprocessNoise - the process noise matrixinitialStateEstimate - the initial state estimate vectorinitialErrorCovariance - the initial error covariance matrixpublic RealMatrix getStateTransitionMatrix()
getStateTransitionMatrix in interface ProcessModelpublic RealMatrix getControlMatrix()
getControlMatrix in interface ProcessModelpublic RealMatrix getProcessNoise()
KalmanFilter every predict step, so implementations of this
interface may return a modified process noise depending on current
iteration step.getProcessNoise in interface ProcessModelKalmanFilter.predict(),
KalmanFilter.predict(double[]),
KalmanFilter.predict(RealVector)public RealVector getInitialStateEstimate()
Note: if the return value is zero, the Kalman filter will initialize the state estimation with a zero vector.
getInitialStateEstimate in interface ProcessModelpublic RealMatrix getInitialErrorCovariance()
Note: if the return value is zero, the Kalman filter will initialize the error covariance with the process noise matrix.
getInitialErrorCovariance in interface ProcessModelCopyright © 2003-2012 The Apache Software Foundation. All Rights Reserved.