public class PoissonDistribution extends AbstractIntegerDistribution
| Modifier and Type | Field and Description |
|---|---|
static double |
DEFAULT_EPSILON
Default convergence criterion.
|
static int |
DEFAULT_MAX_ITERATIONS
Default maximum number of iterations for cumulative probability calculations.
|
randomData| Constructor and Description |
|---|
PoissonDistribution(double p)
Creates a new Poisson distribution with specified mean.
|
PoissonDistribution(double p,
double epsilon)
Creates a new Poisson distribution with the specified mean and
convergence criterion.
|
PoissonDistribution(double p,
double epsilon,
int maxIterations)
Creates a new Poisson distribution with specified mean, convergence
criterion and maximum number of iterations.
|
PoissonDistribution(double p,
int maxIterations)
Creates a new Poisson distribution with the specified mean and maximum
number of iterations.
|
| Modifier and Type | Method and Description |
|---|---|
double |
cumulativeProbability(int x)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(X <= x). |
double |
getMean()
Get the mean for the distribution.
|
double |
getNumericalMean()
Use this method to get the numerical value of the mean of this
distribution.
|
double |
getNumericalVariance()
Use this method to get the numerical value of the variance of this
distribution.
|
int |
getSupportLowerBound()
Access the lower bound of the support.
|
int |
getSupportUpperBound()
Access the upper bound of the support.
|
boolean |
isSupportConnected()
Use this method to get information about whether the support is
connected, i.e.
|
double |
normalApproximateProbability(int x)
Calculates the Poisson distribution function using a normal
approximation.
|
double |
probability(int x)
For a random variable
X whose values are distributed according
to this distribution, this method returns P(X = x). |
int |
sample()
Generate a random value sampled from this distribution.
|
cumulativeProbability, inverseCumulativeProbability, reseedRandomGenerator, sample, solveInverseCumulativeProbabilitypublic static final int DEFAULT_MAX_ITERATIONS
public static final double DEFAULT_EPSILON
public PoissonDistribution(double p)
throws NotStrictlyPositiveException
p - the Poisson meanNotStrictlyPositiveException - if p <= 0.public PoissonDistribution(double p,
double epsilon,
int maxIterations)
throws NotStrictlyPositiveException
p - Poisson mean.epsilon - Convergence criterion for cumulative probabilities.maxIterations - the maximum number of iterations for cumulative
probabilities.NotStrictlyPositiveException - if p <= 0.public PoissonDistribution(double p,
double epsilon)
throws NotStrictlyPositiveException
p - Poisson mean.epsilon - Convergence criterion for cumulative probabilities.NotStrictlyPositiveException - if p <= 0.public PoissonDistribution(double p,
int maxIterations)
p - Poisson mean.maxIterations - Maximum number of iterations for cumulative
probabilities.public double getMean()
public double probability(int x)
X whose values are distributed according
to this distribution, this method returns P(X = x). In other
words, this method represents the probability mass function (PMF)
for the distribution.x - the point at which the PMF is evaluatedxpublic double cumulativeProbability(int x)
X whose values are distributed according
to this distribution, this method returns P(X <= x). In other
words, this method represents the (cumulative) distribution function
(CDF) for this distribution.x - the point at which the CDF is evaluatedxpublic double normalApproximateProbability(int x)
N(mean, sqrt(mean)) distribution is used
to approximate the Poisson distribution. The computation uses
"half-correction" (evaluating the normal distribution function at
x + 0.5).x - Upper bound, inclusive.public double getNumericalMean()
p, the mean is p.Double.NaN if it is not definedpublic double getNumericalVariance()
p, the variance is p.Double.POSITIVE_INFINITY or
Double.NaN if it is not defined)public int getSupportLowerBound()
inverseCumulativeProbability(0). In other words, this
method must return
inf {x in Z | P(X <= x) > 0}.
public int getSupportUpperBound()
inverseCumulativeProbability(1). In other words, this
method must return
inf {x in R | P(X <= x) = 1}.
Integer.MAX_VALUE.Integer.MAX_VALUE for
positive infinity)public boolean isSupportConnected()
truepublic int sample()
Algorithm Description:
Devroye, Luc. (1981).The Computer Generation of Poisson Random Variables Computing vol. 26 pp. 197-207.
sample in interface IntegerDistributionsample in class AbstractIntegerDistributionCopyright © 2003-2012 The Apache Software Foundation. All Rights Reserved.