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New Approaches for Analyzing
Quantitative Traits and Their
Applications in Cotton

Jun Zhu

1. INTRODUCTION

Most agricultural and economically important traits of cotton are quanti-
tative traits, which are controlled by polygenes with different genetic
effects and are affected by the environment. Many quantitative genetic
analyses have been conducted in cotton since the 1950s (Meredith, 1984).
Generation mean analysis (Mather and Jinks, 1982) and diallel cross analy-
sis (Yates, 1947; Hayman, 1954; Griffing, 1956; Gardner and Eberhart,
1966) have been the most widely used methods for quantitative genetic
analysis in cotton. The generation mean analysis calculates the mean and
variance for populations of parental and segregating generations. Since
this method needs to measure individuals of many generations, it cannot
handle complicated models with genotype x environment (GE) interac-
tions. Diallel cross analysis utilizes analysis of variance (ANOVA), which
has a few deficiencies in analyzing advanced genetic models containing
unbalanced data, non-integer values of coefficients, and correlated ran-
dom factors. '

Since the 1970s, some new statistical methods have been developed for
analyzing mixed linear models. Mixed linear model approaches can over-
come the shortcomings of ANOVA methods while handling unbalanced
data and complicated models. Development of mixed linear model ap-
proaches and its application in quantitative genetics have created enor-
mous challenges for quantitative geneticists in dealing with complicated
genetic problems. ’

I this chapter, some new genetic models and their corresponding

| - analyses for quantitative genetics will be reviewed. Methods recently
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developed for mixed linear models with their applications will be evalu-
ated to show the ways of solving complicated problems in quantitative
genetics for crops such as cotton. Since the mixed model approaches
involve enormous matrix computation, an appropriate software has been
developed for analyzing experimental data (Zhu, 1997), which is avail-
able at ‘http://statgen.ncsu.edu/zhu/index.html’ and can also be
downloaded.

2. ANALYSIS METHODS FOR AGRONOMIC TRAITS

Quantitative traits are controlled by, polygenes that have small effects
and are easily affected by the environment. Genotype X environment
interactions have been detected for many quantitative traits of crops.
Understanding the genotypic effects, as well as GE interaction effects on
agronomic traits, is of great importance for plant breeding and sustain-
able agricultural production.

When genetic experiments are conducted in multiple environments,
the phenotypic performance of a genetic entry in one environment can be
expressed by the following genetic model:

y=u+E+G+GE+B+e¢ (2.1)

where, u population mean, E = environment effect, G = genotypic
effect, GE = genotype X environment interaction effect, B = block effects
(if present), and & = residual effect.

Cockerham (1980) proposed a general genetic model for partitioning
the total genotypic effect (G). Zhu (1994) extended Cockerham’s general
genetic model by including a GE interaction. If there are only additive
(A) and dominance (D) effects, the effects can be partitioned as:
G = A + D and GE = AE + DE. Therefore, the total phenotype variance
(Vp) for each trait, as'well as the total phenotype covariance (C) between
the two traits, can be partitioned as:

VP = VA + VD + VAE + VDE + VS (2.2a)

Instead of using F; progenies in a diallel mating or factorial mating
design (Hallauer and Miranda, 1981), F,’s and the parental lines can be
used for analyzing A, D, AE and DE effects (Zhu, 1993a). A genetic model
for parent (i = j) and F, (i # j) ih the k-th block within the h-th environ-
ment is given by:

1

+ A+ AEy + 3 DEji+ 4 DEyj+ £ DEjy+ Byt 6 (23)
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where, this model cannot be analyzed by ANOVA approaches since the
coefficients for D and DE are non—mteger for F,’s. Variance and covariance
components can be estimated in an unbiased manner by the Minimum
Norm Quadratic Unbiased Estimation MINQUE (1) method (Zhu and
Weir, 1996b). For genetic models with GE interaction effects, the total
heritability (h%) can be partxtloned into genetic heritability (14 = V,/V})
and interaction heritability (h%; = V,z/V}) (Zhu, 1997). General herit-
ability, which is applicable to multiple environments, is the ratio of
variances of accumulated heritable genotypic effects to phenotypic vari-
ance. Interaction heritability, which is only applicable to specific environ-
ments, is the ratio of variances of accumulated heritable GE interaction
effects to phenotypic variance.

Since phenotypic variance (V) and covariance (Cp) can be partitioned
into components for G and GE effects, phenotypic correlation between
two traits (1 and 2) is also contributed by correspondent components of
correlation:

JVAup‘/VA(z)r +\/Vpu) \/VD(Z-)T +\/VA£(1) \/VAE(z) .
SN Ve Ve Y Ve VVe © \ Ve \ Ve E

N Voea) [Voee) - ’Vs(l) Ve . 24

Vey Ve OF Ve Ve C @4

where, r, = C,/ ,/VA(l) Vi) is additive correlation, r, = C,/
,/VA(I) Vaw) is dominance correlation, T4= CA/,/VA(D V@) is AE in-

teraction correlation, rpp = Cpr/ \/Vpey Ve is DE interaction correla-

tion, and 7,4 = C4/\[Va(1) Va(z) is and residual correlation.

Prediction of genetic merit can be obtained by the linear unbiased
prediction (LUP) method (Zhu and Weir, 1994; Zhu and Weir, 1996a) or
the adjusted unbiased prediction (AUP) method (Zhu, 1993a; Zhu and
Weir, 1996b). Predicted genotypic effects and GE interaction effects can
be further used in analyzing heterosis of different generations (Zhu, 1997).
Heterosis in specific environments consists of two components. General
heterosis is due to genotypic effects and ¢an be expected in all environ-
ments, while interaction heterosis is a component of GE interaction unique
to specific environments. The two components of heterosis expressed as a
proportion of the midparent or better parent can be calculated as:
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n-1
General heterosis of F,, over midparent: Hy(F,) = (%) Ap

\n-1
Interaction heterosis of F, over midparent: Hy(F,) = (‘12") Ape

General heterosis of F, over better parent (P,):

n-1
Hg(F,) = (%) Ap -~ wg

Interaction heterosis of F, over better parent (P)):
1 n-1 1' _
Hgg(F,) = (5) Ape -7 Wck

where, Ap = (D,, Dj)) is dominance heterosis, Apg = Dh,-,-— 1 (DE,;; .

+ Dh”) is DE mteractlon heterosis, g = |G(P) - G(P)! is parental geno-
typic difference, and gGgp = |GE(P) - GE(P)! is parental interaction
difference.

Heterosis, based on population mean (i.e. Hpy = % Hy, Hpye =

% Hye, Hpg = % Hg or Hpgg = —;12 Hpgg), can be used to compare the .

proportion of heterosis for different traits. In an analysis for Parents and
Fi’s from a 6 X 6 diallel cross of cotton, average heterosis of F,’s (Hpy
(F,)) was 8.12 per cent for bolls per plant and 543 per cent for boll size
(Zhu, 1993a). One F, progeny exhibited 11.6 per cent heterosis over the
parent with more bolls, and the F; of this cross was expected to have 5
per cent more bolls than the better parent. Wu et al. (1995) analyzed ten
parents and their 20 F;’s and F,’s of cotton in two years. They found that
hoterosis averaged 10 per cent for bolls per plant and 3 per cent for boll
size. Tang et al. (1996) analyzed 64 F, hybrids resulting from crosses of
four commercial cultivars and 16 pest-resistant germplasm lines for five
fiber and four yield traits in four environments at Mississippi State, MS,
USA. They found that dominance variance accounted for the major pro-
portion of the phenotypic variances for lint yield, lint percentage and boll
size. A low proportion of additive variance for fiber traits and significant
additive x environment variance components were observed.

For some traits of crops, epistatic effects could be important compo-
nents of total genotypic effects. Among three types of epistasis [additive
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by additive (AA), dominance by dominance (DD), and additive by domi-
nance (AD)], AA is most important for its response to selection. Zhu
(1994) suggested using three generations (Parents, F,’s, and F,’s) from a
dialle] mating to estimate A, D, and AA effects and their environment
interactions, AE, DE, and AAE effects. The partitioning of G and GE
effects for these three generations in the h-th environment is defined as:

G(P) + GE(P) = 2A;+ D; + 4AA; + 2AE,; + DE;; + 4AAE
G(Fli]-) + GE(Flij)= A+ Aj + D,-j + AA; + AA]-]- + 2AA,-}. +AE,; + AEhj
+ DEhi]- + AAE,; + AAE,,]-j + 2AAE,,,~; (2.5)

G(Fy) + GE(Fy) = Ai+ Aj + % D, + % Dj+ % D; + AA; + AA; + 2AA,

+AEy; + AEy; + ¢ DEy + - DEy; + 5 DEy; + AAEy

+ AAE,W +'2AAE,,,-,~.

The epistatic model can be analyzed by the MINQUE(1) method (Zhu
and Weir, 1996b) for estimating variances and covariances, and by the
LUP (Zhu and Weir, 1994) or AUP method (Zhu, 1993a; Zhu and Weir,
1996b) for predicting genetic effects. The partitioning of total phenotype
variance (V;) and covariance (Cp) are as follows: ‘

VP = VA + VD + VAA + VAE + VDE + VAA.E + VE (26a)
CP=CA+CD+CAA+CAE+CDE+ CAAE+C8 (2.6b)

When the AA epistasis effects are included in the model, predicted
heterosis will contain extra components (24,4, and 2A,4;) (Xu and Zhu,
1999), such that:

HM(Fn) + HME(Fn) =

1 n-1 1 n-1
[(E) AD +2AAA + (5) ADE +2AAAE'

Hy(F,) + Hge(F,) =

1\"? 1 1\"? 1
(E) AD‘EwG +2A 44 |+ (E) ADE‘ECOGE +2A A4E

where, Agy = AA; - % (AA; + AA;) is epistatic heterosis, and Ag4f =

AAE,;~ % (AAE,; + AAE,) is epistatic X environment heterosis.
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It is suggested that heterosis due to additive epistasis (AA and AAE)
could be passed to later generations, but that due to dominance (D and
DE) should be reduced by half for each succeeding generation. Using the
AD + AA model with GE interaction effects, Xu and Zhu (1999) predicted
the general and interaction heterosis of cotton over two years. General

heterosis was significant for bolls per plant [Hpy(F;) = 11.8% and Hpy(F,)

£ 6.5%] but not for boll size. The reverse was true for interaction heterosis.
For boll size, Hppg(F;) = 6.3% in 1992, and Hpyp(F;) = 7.2% and Hpye(F,)
= 2.8% in 1993.

For analyzing agronomy traits, programs of ‘GENAD.EXE’ for AD
model and ‘GENADE.EXE’ for AD + AA model can be used for analyzing
data file ‘filename.txt’ in order to construct design matrix of experimental
data. Estimated variance components and predicted genetic effects can
be obtained with the program ‘GENVARIR.EXE’ for jackknifing over
blocks or ‘'GENVARI1C.EXE’ for jackknifing over entry means. Covariance
components can be estimated with the program ‘GENCOVIR.EXE’ or
‘GENCOV1C.EXE’. Heterosis can be predicted by the program.
‘GENHETIR.EXE’ or ‘GENHET1C.EXE'.

3. ANALYSIS METHODS FOR SEED TRAITS

An important breeding objective is improvement of crop quality. Genetic
models with applicable statistical methods for developing seeds are of
importance for efficient analysis of seed quantitative traits. Seed traits
could be simultaneously controlled by seed direct genetic effects (Gp),
cytoplasm genetic effects (G.), and maternal nuclear genetic effects (G,),
as well as their respective GE interaction effects (GoE, G¢E, and Gy E).
Therefore model (2.1) needs to be expanded to include more genomic
systems for seed traits (Zhu, 1996) as follows:

Yy=p+E+Gyg+Ge+Gy+ GoE+GE+GyuE+B+¢€
=u+E+A+D+C+Am+Dm+AE + DE + CE
+ AmE + DmE +B + ¢ ’ 3.1)

where, A = direct additive effect, D = direct dominance effect, C = cyto-
plasmic effect, Am = maternal additive effect, Dm = maternal dominance
effect, AE = direct additive x environment interaction effect, DE = direct
dominance X environment interaction effect, CE = cytoplasmic x environ-
ment interaction effect, AmE = maternal additive x environment interac-
tion effect, and DmE = maternal dominance X environment interaction
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effect. The components of the total phenotype variance (V) consist of the
following variances and covariances:

VP= VGO +VGC +VGM ‘+VG0E +VGCE

+ VGME + 2CGo.GM + ZCGOE.GME + Ve
= VA + VD+ VC + VAm + VDm + VAE+ VDE+ VCE+ VAmE
+ Voue + 2Caam + 2Cppm + 2Cag ame + 2Cpg. pme + Ve 32)

where, C,6y = Caam + Cppm is the covariance between the G, effect
(A and D effects) and the G, effect (Am and Dm effects) of the same trait,
C6oeGuE = Car.ame = Cpe.pme is the covariance between the GoE effect

(AE and DE effects) and the G yE effect (AmE and DmE effects) of the
same trait.

The total phenotype covariance (Cp) between two seed traits can also
be partitioned the same way as for phenotype variance:

Cp= CGO +CGc +CGM +CGoE +CG(_~E "“CGME

+2Cqo /6m +2CcoE/cmE +Ce (3.3)
= CA + CD+ Cc"" CAm + CDm + CAE+ CDE + CC£+ CAmE
+ Come + 2Ca/am + 2Cppm + 2Cpg/ame + 2Cpg/pme + Ce

where, Cc, /G, = Ca/am + Cpjpm is the covariance between the G, effect
(A and D effects) of one trait and the G,, effect (Am and Dm effects) of

another trait, Cc,e/Gye = Cap/ame + Coe/pme 15 the covariance between
the GE effect (AE and DE effects) of one trait and the Gy E effect (AmE
and DmE effects) of another trait.

Based on this extension, experiments of a diallel cross with three gen-
| erations (Parents, F,’s, and F,’s) conducted in multiple environments can
| be appropriately analyzed (Zhu and Weir, 1994; Zhu, 1996). For cotton
| seeds the partition of the total G + GE effect for three generations is

+ DEhii + CEhi + 2AmEh,- + DmEh,-i

+ AEy# DEy; + CEy; + 2AmE,, + DmE,; (34)

s
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G(Fy;) + GE(Fy) = A+A+lD,,+ D; +—D +C; + Am; + Am

1 1 1
+ Dm,l + AEhi + AEh] + Z DEkii + Z DEh]] + E DEhij

+ CEy; + AmE,; + AmE,; + DmEy;

Other generations, such as BC;’s and BC,’s and their reciprocals (RBC,’s
and RBC,’s, respectively), can also be used for analyzing seed traits (Zhu
and Weir, 1994; Zhu, 1996). Variances and covariances of the models for
seeds can be estimated by the MINQUE (0/1) method (Zhu and Weir,
1994). Therefore, other parameters (e.g. heritability and selection response)
derived from variance and covariance components can be obtained. In
seed genetic models, the total heritability (#*) can be partitioned into
general heritability (k3 ) and interaction heritability (hig) as:

K = h2 +th
=h3 +hZ +h}, +hip +hi +hi, (3.5

where, h2 = (V4 + Cg 4,)/ Vp is direct general heritability, h = V/Vp is
cytoplasmic general heritability, and h%; = (V,,, + C4 4,/ Vp is maternal
general heritability; and h3; = (Vg + Capame)/ Vp is direct interaction

heritability, h2; = Vg/Vpis cytoplasmic interaction heritability, and h
= (Vame + Cap.ame)/ Vp is maternal interaction heritability (Zhu, 1997).

Heritability is often used in predicting selection response. Since herit-
ability consists of several components for the seed model, the total selec-

tion response (R = ih2 [V ) can also be partitioned into several compo-
nents (Zhu, 1997) as: 4

R =R¢ + Rgg (3.6)

= (Ro+ Rc + Ryp) + (Rog + Reg + Ryie)
where, R = ih2 JVp is general response, which consists of direct general
response (Rg = ih}3 JVp ), cytoplasmic general response (R¢ = ih2 JVe),
and maternal general response (Ry = ih2, JVp); Ree = ihd; JVp s
interaction response, which consists of direct interaction response
(Rog =1h éE ‘/V; ), cytoplasmic interaction response (Rcg = ih %E \/\—/7 ),

and maternal interaction response (R g = ih2; "Vp ).
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Plant breeders usually want to improve seed quality traits while re-
taining the genetic merit of agronomic traits. Therefore, understanding
the genetic relationship between seed quality traits and agronomic traits
is of importance. While seed models include direct (A and D), cyto-
plasm (C(5)) and maternal effects (Am, and Dmg), models for the plant
only have cytoplasmic (Ci)) and plant nuclear effects (Ampyand Dmp)).
These two kinds of models have unequal design matrices. Zhu (1993b,
1997) developed a new method for estimating covariance components
between seed traits and maternal plant traits. Applying this method,
Wang et al. (1996) analyzed data from a two-year experiment for five
upland cotton parents and their F,’s and F,’s. Covariances between four
kernel quality traits (oil content, oil index, protein content, and protein
index) and four yield traits (lint yield, boll number per plant, boll size,
and lint percentage) were estimated. No significant covariances were
found between lint yield per plant and kernel quality. Covariances were
negative for boll number per plant but positive for boll size with oil
content, oil index, and protein index for cytoplasmic effects, and mater-
nal additive and dominance effects, as well as their environmental inter-
action effects. There were positive cytoplasmic and maternal relation-
ships between lint percentage and protein index.

Genetic effects in the seed model can be predicted by the LUP (Zhu
and Weir, 1994) or AUP method (Zhu, 1993a; Zhu and Weir, 1996b).
Heterosis of seed traits also consists of components due to direct, cyto-
plasmic and maternal effects as well as their GE interaction effects (Zhu,
1997). For quantitative traits of seed, two types of heterosis can be evalu-
ated: Heterosis over midparent (H,;) and heterosis over female parent
(Hg):

Hy(F,) + Hyg(F,) = Hyo + Hyc + Hym + Hyor + Hyecp + Hyue ¢
. n-1 n-2
=(-21-) Ao +%ch +(%) AM

F

n-1 n-2
— 1
+(%) Aok +%wCE +(§) Apme

i

Hy(F,) + Heg(F,) = Hgo + Hpy + Heop + Hppe

“(3)" 2010 [(3) aw -1
8 st ) -]
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where, Ap = (D,, D;), Ay = Dm; - l (Dmy + Dmy), Go = 2(A; -
A)+([D;-D ) a,c Ci- Cjo @ = 2(Am; - _hm my) + (Dmy; - Dmy).

Zhu et al. (1997) analyzed three years of data (1991-1993) for kernel
nutrient quality traits of upland cotton. The experiment consisted of nine
generations (P;and P;, F; =P; XxP, RF,; =P; xP;, F, BC;=F,; xP;, BC;=F,
x P, RBC; = P; x Fy, RBC; = P; x F1§ derlved from five parents and thelr six
F; crosses The results for kemel oil content and protein content are pre-
sented in Table 1. The total GE interaction variance (Vg = Vg + Vpg +
Vee + Ve + Vpye) was almost as important as the total genotypic vari-
ance (Vg=V, 4+ Vp+ Ve + Vy,, + Vp,) for oil content (Vi = 5.065, Vg &
5.112) and protein content (V; = 6414, Ve = 4.390). Seed effects (Vg +
Vor = 3.138 for oil content and 3.766 for protein content) appeared to be
less important than cytoplasmic and maternal effects (Vo + Vi + Vg +
Ve 2 7.040 for oil content and protein content). Variances of dominance
effects (Vp + Vp,, + Vpg + Vp,e = 2403 for oil content and 1.255 for
protein content) were much smaller than those of heritable effects (V4 +
Ve + Vg + Vg + Vg + Ve = 7.774 for oil content and 9.549 for protein
content). The covariances (C4 4., and Cp p,,) suggested that the genotypic
effects of seed and plant genomes were positively correlated for protein
content but not for oil content.

Table 1. Estimates of genetic parameters for kernel oil content and protein content in
upland cotton

Trait \% A VD VC VA m VDm VAE VCE VDmE

Oil % 1.485* 0.426* 0.000 3.154* 0.000 1.227**  1.908** 1.977*
Protein %  1.586** 0.478* 1.692** 1.881* 0777* 1702** 2.688* 0.000

Caam Co.om Ve h (2) h% h %/I h (2)5 h éE

Oil % -1.083 0.000  0.956** 0.045 0.000  0.231** 0.137** 0.213**
Protein %  0.673** 0.170* 0591** 0.173** 0.129* 0.195** 0.130** 0.206**

rp TA p TAm YAE fee Te
Oil % & -0.130** 0.278* -0.093* -0.327** 0.309** -0.266** —0.415**
Protein %

* ** Significantly different from zero at the 0. 05 and 0.01 levels of probability, respectively.

The total general heritability (h2 =h2 +h2 +h2) was higher than
the total interaction heritability (h2; =h2 2 g +hép + hjye) for protein con-
tent (h2 0.497 > h2 =0.336). But the reverse was true for oil content
(h2 20. 231<h = 0 350). Therefore, it would be more difficult to
improve oil content than protein content. For improvement of seed quan-
titative traits, selection should be based on measuring individual seeds
(single-seed selection) or samples of seeds from maternal plants (mater-
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nal-plant selection). For oil content and protein content, maternal plant
selection could be more efficient than single seed selection, because the
major component of hZ was h; for oil content and (h2, + h2) for protein
content. As h2; was the main components of k2, selection based on
cytoplasmic interaction effects could result in genetic gain in specific
environments. Between the two traits a very weak negative r, was ob-
served, which was primarily due to negative rp, 74, 7 and 7. The
positive additive (r,) and AE interaction (r4;) correlations suggested that
oil and protein content might be simultaneously improved by single-seed
selection for these two traits.

For analyzing diploid seed traits, programs of ‘GENDIPLD.EXE’ can
be used for analyzing data file ‘filename.txt’ to construct design matrix of
experimental data. Estimated variance components and predicted genetic
effects can be obtained with the program ‘GENVAROR.EXE’ for jackknif-
ing over blocks or ‘GENVAROC.EXE’ for jackknifing over entry means.
Covariance components are estimable by the program ‘GENCOVOR.EXE’
or ‘GENCOVOC.EXE’. Heterosis can be predicted by the program
‘GENHETOR.EXE’ or ‘GENHETOC.EXE'.

4. ANALYSIS METHODS FOR DEVELOPMENTAL TRAITS

Understanding the gene expression for quantitative traits at specific times
is an important objective in developmental quantitative genetics. Cotton,
like many other crops, has a long period of blooming and boll-setting.
The final yield of cotton is determined by the number of bolls setting at
different stages of growth. For an additive and dominance model with
GE interaction effects, the phenotypic value of quantitative trait meas-
ured at time f can be partitioned as:

Yy = My + Egy + Gy + GEgy + By + & ‘
=My + Eg + A + Dy + AEy) + DEyy + B+ gy 4.1)
The partitioning of phenotypic variance at time ¢ in model (3.1) can be
expressed as: \
Vew = Voo + VoenVan *+ Ve
=Vapt+ Voo + Vagy + Voew + VapVew (4.2)

Analyzing random effects in model (4.1) and variance components in
equation (4.2) will reveal the genetic properties of accumulated
genotypic effects and GE interaction effects from initial time to time ¢
(ie., 0 — ). In order to study the net gene effects in the period from time
t-1to time f (ie, t -1 — t), Zhu (1995) developed a mixed model
approach for analyzing conditional genotypic effects and conditional vari-
ance components. The conditional genetic model for the phenotypic mean



54 New Approaches for Analyzing Quantitative Traits

measured at time ¢ conditional upon the phenotypic mean measured at
time £ -1 is:
Yere-n = Bgre-ny + Eqrecy + Geieny + GEe -1y + Bie -y + ey (4.3)
= Pgie-y+ Egre-ny + Agieay+ Dy + AE ;. '
+ DEg )+ Bgeiroay + Egre-n)
with conditional phenotypic variance partitioned as:
Vogie-1= Vegiey + Veeeie-y + Vagie-ny + Veeit-1 (44)
= Vagir-ny + Vperey + Vaeeie-1y + Voegie-y + Vagit-1y+ Ve
The genotypic effects and GE interaction effects at time ¢ conditional
upon the causal effects at time (t — 1) will imply the new effects of genes
which are independent of the causal effects. The changes in conditional
genotypic and GE interaction variance can be used to measure the
epigenetic effects of the causal components on the dynamic variability of
developmental behavior. : '
Zhu (1995) applied these conditional approaches to analyze fruiting
behavior of upland cotton in 1981 and 1985. From 1 July to 3 September
in each year, bolls per plant were counted every 5 days on 10 plants from
each plot. Cell means for the two-year data were analyzed by the addi-
tive-dominance model including GE interactions. Genotypic variance
(Vg = V4 + Vp) was more important than GE interaction variance (Vg =
Vag + Vpg). The major contribution of genetic variation for number of
bolls per plant was due to the dominance variance component in the
early blooming period, but was due to the additive variance component
in the later blooming period. Additive effects (A, for full-season variety
DPL15, A, for early-season variety GL5) and additive variances are sum-
marized in Table 2.

Table 2. Estimated additive variance components and predicted additive effects for bolls
per plant of upland cotton, by date

Month/Day Vg Vawit-1 Az(:)+ AS(!) Axpit-1) Aa(: 1t-1)
7/05 0.11* 0.11* -0.27** 0.30** 027+ 0.30**
7/10 0.19* 000 , -035* 0.32* 0.00 0.00
7/15 0.00 0.00 0.00 0.00 0.00 0.00
7/20 0.00 0.01 0.00 0.00 0.04 0.03
7/25 0.00 0.00 0.00 0.00 0.00 0.00
7/30 0.00 0.11* 0.00 0.00 0.12* -0.29*
8/04 0.00 0.60** 0.00 0.00 0.44** -0.79**
8/09 2.25* 0.53%* 0.38* -1.31* 0.66** —0.56**
8/14 4.47* 0.10* 0.81* -2.06** - 0.27* -0.14
8/19 6.27* 0.07* 1.18** -247* 0.25 -0.03
8/24 7.26%* 0.00 1.40% 267 0.00 0.00
8/29 7.78** 0.01* 1.54* —2.78%*. 0.06 -0.02
9/03 8.18** 0.02** 1.64** -2.87** 0.07 -0.05

* » Significantly different from zero at the 0.05 and 0.01 levels of probability, respectively.
+ A, = DPL15, A; = GLS.
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At the early stages (7/05 to 7/10), there was significant unconditional
additive variance (V4()- Unconditional additive effects (Ay) were posi-
tive for GL5 but negative for DPL15. Conditional additive effects P
(A7/1017/05)) and conditional variance (Va@/1017/05) were not significant”
at 7/10. This implied that there was no additional gene expression for
additive effects from time 7/05 to 7/10. Detection of significant uncondi-
tional additive variation at 7/10 was due to the accumulated additive
effects of genes expressed at the initial time. Even though unconditional
additive variance was not detectable at times 7/30 and 8/04, conditional
additive effects and variance were already detected. This implies that
expression of quantitative genes might start several days before the accu-
mulated genetic effects for developmental behavior can be detected by
unconditional genetic analysis. Unconditional additive variance was re-
detectable and increased steadily after 8/04. The unconditional additive
effects were negative for GL5 but positive for DPL15. The increase in
unconditional additive variance was mostly contributed by gene expres-
sion for additive effects during time 8/04 to 8/09. After 8/09 there were
very few new additive effects.

Developmental genetic behavior of quantitative traits for nutrients in
cotton seed can also be analyzed by conditional methodology. The phe-
notype measured at time ¢ for seed can be expressed as a function of
different component effects similar to model (3.1):

Yy = My + Eqy+ Ay + Dy + Cyy + Amgy + Dy (4.5)
+ AEy + DEy) + CE ) + AmE )+ DmE, + g
Phenotypic variance can be partitioned as:
Vewy = Vaw + Vou + Vew + Vame + Vome + VA;(:)
+ Voeg + Vg + Vamep + Vomewy + 2Ca ame) (4.6)

+ 2Cp pm(ty *+ 2Caeame + 2CpEDmE() + Ve

The conditional effects can be analyzed by the mixed model approaches
based on the following conditional seed model:

Yere-1) = Here-1y + Egreony + Agreoy + D1y + Cyreony + Ay, g
+ Dy gy + AEg )+ DE;_1y+ CE g4y +;AmE(tlt—1)
+ DmEg, 4y + €. 4.7)
Conditional phenotypic variance can be partitioned as: ’
Vogie-1) = Vagie-1 + VD(tI_t—1)+ Veere-+ Vamere-1y + Vom@it-1)

+ Vaeeie-1+ Voegie-1+ Veewie-1+ Vameei-1)
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+ Vomegit-1) + 204 amere-1y + 2Cp pmee1t-1)
+ 2C g ame1t-1) + 2CpEDmEE1t-1) + Vei-1) 4.8)

Recently we analyzed a 2-year data set of eight parents and their F;,
reciprocal F;, and F, progenies. This experiment was conducted with two
replications in 1994 and one replication in 1995 at Hangzhou, China.
Lysine index (cg of lysine per 100 seeds) and oil index (g oil per 100
seeds) were measured on seed kernels sampled from four stages (20, 30,
40, and 50 days after blooming). Estimates of unconditional variances a‘t‘ :
the initial stage and conditional variances at successive stages are pre<:
sented in Table 3. '

¢

Table 3. Estimates of variance components for lysineiindex and oil index of upland

cotton
Lysine index (x107") .. Oil index (x107%)
Var 20D 30DI20D 40DI30D 50D140D 20D  30DI(20D 40DI30D 50D 140D
V, 142*%  0.00 30.89 *  0.00 4.66*  0.00 4872 %  0.00
Vp 0.0 1.85*  0.00 1083 * 046 * 966*  0.00 0.00
Ve 079* 000 1739 *  0.00 0.00 0.00 0.00 0.00
Van 072%  946* 1464*  0.00 260 ** 4865 * 131.89 ** 16745 **
Vpm 050% . 667* 0.00 3125  275%  2915% 5220 9272 %
Ve 096* 2397* 3639* 0.0 0.00 3538 *  0.00 0.00
Vo 050*  0.00 1253 *  0.00 286*  6.13% 2298 % 1845 **
Ver 087* 1555*  0.00 5628 * 668 * 4970*  0.00 0.00
Vaue 0.00 528 *  0.00 0.00 0.00 0.00 0.00 25.59 **
Vpme 120*%  0.00 4821*  0.00 0.00 5546 * 3237 *  0.00

V., 054* 4442* 1620* 152.65** 833 ** 2349 * 61.62** 8571 *

** Significantly different from zero at the 0.01 level of probability.

Behavior of genetic effects varied across developmental stages for dif-
ferent traits. For two traits studied, genotypic variance (V) was similar
to GE interaction variance (V¢g) at the initial stage (20D), but conditional
V(00 1200) Was smaller than conditional Vg0 20p) from 20D to 30D. At
the third (30D — 40D) and fourth (40D — 50D) intervals, the gene ex-
pression tended to be more stable (Vuop1300)> Vie@oni3opy Vesopiaop) >
VGE(5OD,40D)) for oil index, but less stable for lysine index. Gene expres-
sion of cytoplasmic and maternal genomes (G, G.E, Gy, and GyE) had
much larger effects than those of the seed gengme (G, GoE) for oil
index, but the difference was not as large for lysine index. At later stages
(30D — 40D — 50D), oil index had larger general heritable effects (G,,
G, and Gy, than interaction heritable effects (G4g, Gcp, and Gapp)-

For analyzing developmental quantitative traits, design matrix of ex-
perimental data should be constructed by using programs described in
section one for agronomy traits or in section two for seed traits. The
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original data files ‘filename.txt’ should be converted into conditional data
files ‘filename.doc’ by running the program ‘GENCONDI.EXE’ for
agronomy traits or ‘'GENCONDO.EXE’ for seed traits. The conditional
files can then be analyzed by the procedures described in the preceding
sections for estimating variances and covariances, predicting genetic ef-
fects and heterosis. o '

5. ANALYSIS METHODS FOR QTL MAPPING

Recent developments in molecular marker techniques and quantitative
trait loci (QTL) mapping methodology have provided possibilities for
identifying individual gene effects for various important agronomic traits.
To date, QTLs have been evaluated mostly by the interval mapping (IM)
method (Lander and Botstein, 1989) using MAPMAKER/QTL software
(Lincoln et al. 1993), or by the composite interval mapping (CIM) method
(Zeng, 1994) using QTL Cartographer software (Basten et al. 1996). These
two methods are based on maximum likelihood approaches for regres-
sion models with different underlying genetic assumptions. Genetic vari-
ation is assumed to be due to one searched QTL (G = Gg) in the IM
method, but is assumed to be due to one searched QTL with markers
linked to other QTLs (G = Gy + Gy in the CIM method. Both IM and
CIM methods cannot directly handle QTL mapping data derived from
multi-environment experiments, because random environmental effects
and QTL x environment (QE) interaction effects cannot be included in
the regression models.

Because quantitative traits are usually controlled by multiple QTLs
i with genetic main effects as well as QE interaction effects, the following
. mixed-model-based CIM (MCIM) method was proposed (Zhu, 1998; Zhu
and Weir, 1998) for analyzing the following genetic model:

y=u+GQl+E+GQE+GM+GME+s (5.1

where, GQ = QTL main effect (fixed), E = environment effect, GQE =QTL
X environment interaction effect, G,; = genetic main effect of markers
linked to other QTLs, and G,,E = marker x environment interaction ef-
fect. . :

When applying model (5.1) for searching a putative QTL within two
flanking markers (M, and M,,), the phenotypic value of a quantitative
trait measured on the j-th individual in the h-th environment can be
expressed as:

Y =H+axa + dei + Ugy, eE,,L+ UAE, €AE, +UDE, €DE, (5.2)

+ ZuMk,» em, + zuMEhkj EMEy T Epj
k#i—,i+ . ck#i- i+
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where, a4 and d are the additive and dominance main effects for the
searched QTL; ¥4; and xp; are coefficients for genotypic effects; e, is
the h-th environment effect with its coefficient ug,; eag, is the additive x
environment interaction effect with its coefficient UAE,; ; €DE, is the domi-
nance X environment interaction effect with its coefficient u DE,;; €M, is
the random main effect for the k-th marker genotype with its coefficient
Cum s eME,, 15 the marker x environment interaction effect with its coeffi-
cient upmg,,;.

If double haploids (DH) or recombinant inbred lines (RIL) populations
are used for mapping QTLs in multiple environments genotypic effects
for A and AA, as well as GE interaction for AE and AAE can be simulta-
neously analyzed by the MCIM method base on the following mixed
linear model (Zhu, 1998):

Y hk =u+a,»xA’.k +[leA,,k +aa,-ijA‘,’,k
+tUE, €k, YUAE, €AE, +uAthk €AE, "’“AA,;E,,,‘ € AAE,
+§umﬁ eM; +§l:uMM,k € MM, +ZMME,,,,k € ME,,
p

+2u MME,; €MME,, +E€nk (5.3)
q

where, 4; and 4; are the additive effects of loci Q;and Q, respectively; aa;;
is the AA epistasis effect of loci Q; and Qi *¥Asr XAy and Xaa,, are coeffi-
cients of these QTL effects; eg, is the random effect of environment h
with coefficient g, ;ea,g, (or ea;E,) is the AE interaction effect with co-
efficient uy,g, (or ua;e,) forQ; (orQ; );e.AA,,j,gh is the AAE interaction
effect with coefficient #ax;Ey,; em ; is the f-th marker effect with coeffi-
cient uy,;emm, is the I-th effect of marker x marker interaction with
coefficient umm, ; emk,, i the ME interaction effect with coefficient
UME,y, ;and eymg, and is the MME interaction effect with coefficient
U MME 1, - ‘

Models (5.2) and (5.3) can be expressed as a matrix form of the general
mixed linear model as:

y=Xb+3U,e, ~N(Xb,V=zo§u,,R,,u,f) (5.4)

where, y is a vector of phenotypic values; b is a vector of the fixed effects
with coefficient matrix x; e, is a vector of random effects with coefficient
matrix U,; and R, is a constant matrix describing the relationship of e,
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The likelihood ratio statistic (LR) can be calculated by:
LR=21y (b,V,#m.q) =210 (b, V, 7m0 =0.5) (5.5)

for testing the null hypothesis Hy; ™. = 0.5 vs. the alternative hypoth-

esis Hy: M, g < 0.5. The LR has an approximate 2 distribution with af =
4 for model (5.2) and df =.6 for model (5.3).

The QTL effects (additive, dominance, and epistasis) in b can be esti-
mated by ‘

b=(XT V-1 X)-1 XT V-1 y (5.6)
with sampling variance matrix:
Var (b)=(XT V-1 X)-1 (5.7)

The QTL X environment interaction effects (ae, de, and aae) e, can be
predicted by the LUP (Zhu and Weir, 1994) or AUP method (Zhu, 1993a;
Zhu and Weir, 1996b).

Shappley et al. (1998) applied the MCIM method for mapping QTLs of
19 agronomic and fiber traits based on 31 linkage groups in upland cot-
ton. There were 100 QTLs located on 60 positions in 24 linkage groups.
Several QTLs influenced more than one trait.

A software ‘QTLMapper Version 1.0’ has been developed by Wang et
al. (1999) for mapping QTLs with additive effects, additive x additive
effects as well as their QTL x E interaction effects. This software and a
PDF file of the user manual are freely available to users from the authors.

6. ANALYSIS METHODS FOR REGIONAL TRIALS

Among the various genetic ‘models described in the previous sections,
further partitioning of the phenotype value can be imposed on the total
genotypic effect (G) as well as the genotype x environment interaction
effect (GE). The purpose of quantitative genetic analysis is primarily to
provide strategic selection information to breeders based on the compo-
nents of G and GE. In crop cultivar development, breeding stocks or
germplasm accessions are usually tested in a wide range of environments
to identify superior genotypes in specific environments. .

Analysis of experimental data from regional trials is based on the
following linear model, which regard the genotypic effects (G) as fixed,
and further partitions the random E(E=Y + L + YL) and GE interaction
effects (GE = GY + GL + GYL):

Yy=u+G+E+GE+B+¢ (6.1)
=u+G+Y+L+YL+GY+GL+GYL+B+¢
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where, Y = year effect, L = location effect, YL = year x location interaction
effect, GY = genotype X year effect, GL = genotype x location effect, GYL
= genotype X year X location interaction effect, and B = block effect.

The genotypes included in regional trials are of specific interest and
are defined as fixed in model (6.1). The other effects in model (6.1) are
usually treated as random effects. Balanced data of the regional trials can
be easily analyzed by ANOVA methods. But the experiment data of re-
gional trial are quite often unbalanced, due to missing some genotype
records in specific locations and years. Zhu et al. (1993a, 1993b) devel-
oped mixed model approaches for analyzing unbalanced data of single
trait and multiple traits from regional trials. The phenotypic data of trait
f(f=1,2,..., t) can be expressed as a matrix form of mixed linear model:

y(f) = Xb(f) + UYey(f) + ULeL(f) + uYLCYL(f) + UGYeGY(f)
+ Ugrecryp) + Ugyiloyiy) + Usea(p + op) (6.2)

8
=Xbs) + XUueyy
u=1
with variance matrix:
Var(y(f))=0'§(f) UYU$ +U%(f) ULUE +G$L(f) LIYLLIQ
2 T 2 T
+GGY(f) UGYUGY + o‘GL(f)UGLlIGL
2 T 2 T 2
+GGYL(f) UGYLUGYL +0'B(f)UBLIB +6£(f)I

8
= El"ﬁ(f)uuuzl"‘v(f)

8
The covariance between traits Y and Yy s C(ﬂc') =230 u(ff*) UuUZ .

u=1
Both variance and covariance matrices can be estimated by the MINQUE(1)
method (Zhu and Weir, 1996b). Comparison of genotypes for trait f can
be conducted by testing linear contrast among genotype effects

3
[hZc 1w Gr ) ] The linear contrast can be estimated by
=1 R

Cipy =cTb=cT (XTV A X)-XTV Ay 6.3)
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with sampling variance 62(C(p)=cT (XT V(}l) X)-c. IfIC(/H /6(Cp)l

g
> Z(4/2) Teject the null hypothesis H, hZch Gus) =0 and accept the
=1

g
alternative hypothesis Hy 3.c; Gys) #0 at a significant level =
h=1 .

¢
To compare the weighted genotypic merits of ¢ traits (fz_:lw £ Gup ],

the weighted linear contrast can be estimated by

¢
Cw hZch wa Gy = fZWf Cin
1 =1 =1

with sampling variance

o2 (Cw)-Zw 02(C<f>)+22 szf ws o (Ciry, Cpr)
_ ‘=f+1

where, & (Cys), Cyy) = cT (XT oy X)~ c is the covariance between C,

(£
and Cgy. If ICw/ 6 (Cw)l > Z(qs2) Teject the null hypothesis

ﬁ—MW

3
Z 7 Gu(s) =0 and accept the alternative hypothesis

g !
H; Y, 2wy Gpp #0 at a significant level =
K=l f=1

For analyzing data from regional trials, the program ‘GENTEST.EXE’
can be used to construct design matrix of experiments. First, run the
program ‘GENTESTM.EXE' for analyzing each trait. Then the program
‘GENTESTW .EXE’ can be used for combining analysis of all traits
studied.
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