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Abstract: By mathematical approaches, the maintenance mechanism of genetic
polymorphism in population as well as the conditions of equilibrium was demonstrated
based on over-dominance model. It was found that principles derived from two-allelic
case had limitation. The principles used in many textbooks for estimating allelic fre-
quencies in equilibrium were special ones that only suit two-allelic case. The extension
to multi-allelic case was performed in alternative approach and a set of formulas were
developed in this paper. The relationship of allele number (n) at one locus to average
fitness (W), genetic load (L), heterozygote frequency (H.) and homozygote frequency
(Hom) In population were discussed.
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1 Introduction

Existence of genetic polymorphism in natural plant and animal populations has been gen-
erally recognized. Two theories, neutralist and balance theory, were proposed to explain the
maintenance mechanism of polymorphism. The neutralist theory or neo-classical theory believes
that the polymorphism is due to the accumulation of unselected mutations and modulated by
random sampling events (Kimura 1979; Merrel 1981). Some mutational theories were proposed,
such as the “infinite alleles” model of Kimura (1968) and the “ladder model” of Ohta and Kimura
(1973) as well as and the “stepwise model” of Kimura and Ohta (1978). The balance theory (se-
lection theory) explains the polymorphism to be the result of the balance of selective forces. When
genetic polymorphism is in equilibrium, population genetic parameters such as allelic frequency
and genetic load which are obtained by the overdominance model for two alleles at a locus are a
function of selection coefficients of homozygotes (Wright 1953). Thus, a very important conclusion
is that the overdominance of heterozygotes can make a stable balance of genetic polymorphism in
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population and the balance depends only upon the selection coefficient of the heterozygotes. Some
people assumed that the finding obtained in two-allelic case seemed to be suitable for genetic poly-
morphic equilibrium in the case of more than two alleles at one locus (Ford 1975; Kuo 1993). Then,
many researchers (Li 1953; Kimura 1956; Mandel 1959; Lewontin 1978) tried to extend the con-
clusion to the case of multi-alleles at one locus and to estimate the population genetic parameters
in genetic polymorphic equilibrium using mathematical formulas. However, since their formulas
in matrix form were quite complex, the direct relationship between the genetic parameters and
genetic polymorphic equilibrium of population could not be consequently determined in explicit
terms. Lewontin (1978) put forward some conjecture on the related condition for maitaining gene
equilibrium and genetic parameters in multi-allelic equilibrium in elicitation method. From his
complex model, he drew an inference of genetic polymorphic equilibrium that n alleles were equal
in frequencies i.e p = 1/n, and there was little variation in fitness among heterozygotes. But the
inference has not be proved in mathematics and theory. In this paper, based on the overdom-
inance model, we proposed some extension to multiallelic case from two-allelic case, developed
some intuitive and easily interpretative formulae for estimating genetic parameters of population
in genetic polymorphic equilibrium, and determined the relationships between population genetic
parameters and allelic number for the first time, and proved Lewontin’s conjecture (1978).

2 Genetic Polymorphism Equilibrium in Two-allelic Case

The topic has been concerned by many geneticists (Mandel 1959; Li 1953; Lewontin 1958,
1978; Kimura 1956; Wallace 1981; Spiess 1983; Hart 1980; Merrell 1981). Overdominance model
believes that the fitness of heterozygotes is superior to that of homozygote of the two alleles from
heterozygote. Selection will result in the decrease of homozygote frequency and the increase of
heterozygote frequency. The decrease of homozygotes A; A; and A, A; causes the decrease of
frequencies of alleles A; and A, respectively, but the increase of heterozygotes A; A; causes the
increase of frequencies of alleles A; and A;. The frequencies of the two alleles A; and Ay will
reach stable equiiibrium at balance point due to the opposite actions of selection.

Set p = frequency of allele A1, ¢ = frequency of allele Ay, s; = selective index of homozy-
gote A1 A;, s3 = selective index of homozygote A3A5, and s; > 0, s3 > 0, p #£ 0,9 # 0. Then
the changes of genotypic frequencies in population after selection can be calculated and listed in
table 1.

Table 1 Analysis of Selectively Superior Heterozygotes in Two-allelic Case

Genotype A1 A A1 Az Az As total
Initial frequency p? 2pq q? 1
Selective index $1 0 s
Fitness ' 1-35 1 1— 59
Final frequency P2 (1~ s1) 2pq %(1 - s2) 1—s1p% — s2¢?

Average fitness (@) of population after selection is

W=p?(1 - 51) +2pg + ¢*(1 — s3) = 1 — s1p* — s52¢°. (1)
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The frequency of allele after one generation is

g = 3= 520)
P 1 sp? = sag?

The change of allelic frequency after one generation is

pq(s1p — s2q)

Ag = —_ = e——— T
I=na 1 — 51p? — s2¢?

le.

Ag = q(s1p* + s2¢% — 529)
q = .
1 - s1p? — 53¢

(4)

According to (3), if the equilibrium is established, allelic frequency changes no longer and the
necessary condition for Ag =0 is s1p — s2¢ = 0. Derivation s2¢ = s1p = s1(1 — ¢) = 51 — s1¢, we

can get
S1

$1 +82’

S2
§1 +52‘

i= p= Q

Equations in (5) are often used in textbooks, they indicate that 1) the equilibrium established
under the selective superiority of heterozygote individuals is a stable equilibrium, it can approach
to equilibrium from either of side and tends to be restored if the population is perturbed; 2) the
equilibrium depends on the selective indices of homozygotes and has no relation with initial allele
frequencies. The principles derived from the two-allelic case are special ones. Since equations
in (5) are feasible for two-allelic case only, extension of them to three or more alleles may be
misleading. Under what conditions does the three or more allelic system at a locus achieve stable
equilibrium? What are the frequencies of alleles at stationary state? These problems had been
partly answered by Kimura (1959) and Lewontin (1958, 1978). In next section we shall give some
intuitive and easily interpretative formulas under the hypothesis of overdominance.

Derivation: from (4), the necessary conditian for setting Ag = 0 is s,p? + s9¢° — 53¢ = 0,
thus

§ = (s1” + 524°) /52, (6)
§ = (s10® + s2¢?) /s1. (7

The equations (6) and (7) reveal that the allele frequency in equilibrium is correlated nega-
tively with selective index of its homozygous individuals and positively correlated with selection
quantity (s1p? + s2¢?) of all homozygotes. For a given set of starting allele frequencies, the selec-
tive indices of homozygotes play an important part in determining equilibrium allele frequencies.

3 Genetic Polymorpﬁism Equilibrium in Three-allelic Case

Set frequencies of alleles A;, A, and A3 to be p, g and r, respectively, where p, ¢ and r do
not equal zero with selective indices of their homozygotes being s;, s, and s3, respectively, and
selective indices of all heterozygotes equalling zero.
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Table 2 Analysis of Selectively Superior Heterozygotes in Three-allelic Case

Genotyp. A Ay AsAg Az As AjA;  A1A; Az A;s Total
Initial freq. p? q2 r2 2pq 2pr 2qr 1
Select.ind. 81 82 53 0 0 0
Fitness 1—-5 1-— s9 1—s3 1 1 1

Final Freq. p2(1-s1) ¢%(1—s2) r2(1—ss3) 2pq 2pr 2gr 1 —s1p? — 5292 — 5372

Average fitness of populations is
T=p*(1~51)+¢°(1 = 52) + r>(1 — s3) + 2pg + 2pr + 2qr = 1 — 5,97 — 53¢ — s3>, (8)
The frequency of allele after one generation is

o= LO-sa)tpetaer gl -s)a+p+r] _ (1 - s29)q )
YT 151 — 527 —sar? 1= s1p% — 52q% — 5312 1 — 51p2 — 52q% — 5312

the change of alleles frequency is

_ q[s1p® + s3r? — s2q(1 — q)] _ alp(s1p — s2q) + r(sar — 529)]

Ag= i — - . 10
= 1 — 51p? — 52¢% — 5372 1 — 51p% — 52¢% — s3r? (10)
We also get
Ap = pla(s29 — sar) + r(sar — s1p)] (11)
1 - 51p? — 52¢% — 5372

Ap = rlp(s1p — sar) + q(s2g - 837')]' (12)
1 — s1p? ~ 52¢% — s37?

From -equation (10), the necessary condition for Ag =0 is

p(s1p — saq) + r(ssr — s2¢) = 0. (13)

Derivation : from.(13), we can obtain s1p? + s372 = sapg + s2rq = s2g(p + 7). = s29(1 — ¢) =
S2q — s2¢%, s2g9 = s1p? + s2¢% + s3r?. Thus

§ = (s1p” + s2¢° + 537%) /5. (14)
From equations (11) and (12), we can also get

P = (51p% + s2¢° + s37%) /1, (15)
P = (31p2+52q2+53r2)/33. (16)

Equations (14)~(16) are similar to equations (6) and (7}, the only difference is that the latters

have more one term, s3r?-in numerator. The relationships of allele frequencies in equilibrium to

selective indices of their homozygotes are not different from two-allelic case.
4 Genetic Polymorphism Equilibrium in N-Allelic Case

We suppose there are n alleles at one locus, A), Az, Az, -+, A;,- -+, A, set sy, 83, 83, 8,
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-+, 85 to be selective indices of their homozygotes and f1, f2, fa, -+, fi, -, fn to be the initial
frequencies of alleles.

According to the same philosophy in two-and three-allelic case, we can get
average fitness of population:

W=1-s1ff —soff —  =siff = — s, f2. (1)
The frequencies of alleles after one generation is

f=plidl (18

1- Z(szfz

the change of allele frequency is

i Zfi(sifi - s;if;)
Afj=fi—fj=—Sb— . i#d, §=1,2,3,,n (19)

- Zsifiz

i=1

We can get n equations of Af; here.
From equation (19), the necessary condition for Af; =0 is

o filsifi—sifi)=0, j=1,28,,n, i#j, (20)

i=1
we can get n equations also from equation (20) to estimate the frequency of allele j in equilibrium:
fi=(ufitaff+ o tsafd)/s; = Zszf, [si  i=12n. (21)

Equation (21) is a general formula and an extension of equations (6}, (7), (14), (15) and (16) in
two-and three-allelic cases to n-allelic case. ‘

5 The Number of Alleles and Frequencies of Homozygotes and Het-
erozygotes

In three-allelic case, if the population is in equilibrium, p+§+# = 1, from equations (14)—(16),
we can obtain :
(1/51 +1/82+1/S3)(81p2+82q2+337‘2) = 1, (22)

If sy = s5 = s3 = s, from equation (22), we can also obtain
P+¢i+rt=1/3 (23)

Equation (23) indicates that if selective indices of all homozygotes are the same, then the
frequency is 1/3 for all homozygotes and 2/3 for all heterozygotes. These results can be easily
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extended to the n-allelic case. The frequency of all homozygotes (Hom) is
. 1
Hom=Z}f,?=ff+f3+f§+--~+f3=;, (24)
=
and the frequency of all heterozygotes (H.) is

He=Y 3 fp=""t=1- 1 (25)

i=1 j=1

From equations (24) and (25), based on overdominance model, we can conclude that 1) if
selective indices of all homozygotes are the same and the population is in equilibrium, the fre-
quencies of homozygotes will decrease and the frequencies of heterozygotes will increase with the
increase of allele number at a locus; 2) frequency decrease of one kind of homozygotes will cause
the frequency decrease of the allele from the homozygote, while the increase of heterozygote fre-
quency will cause increase of the frequency of alleles in heterozygotes. The opposite forces will
drive the frequency of the allele to an equilibrium; 3) high frequencies of heterozygotes provide the
opportunity for many alleles to coexist in natural population and this is the reason why abundant
genetic variation and polymorphism exists in population.

6 The Number of Alleles and Average Fitness of Population

When a population genetic polymorphism achieves equilibrium, the average fitness of the

population is maximised (Merrel 1981), according to equation (17), the average fitness of popula-
tion is

w:l—Slflz—-Szfzz—“--—Sifiz—"'—Snf,?:1—(31f12+32f22+"'+sifi2+"'+snfr?)’ (26)
If sy = s3 = s3 = = s, from equation (24) and (26) we can obtain
T=l-s(fi+f++f++f)=1-s/n (27)

Equation (27) indicates that 1) the average fitness of population in equilibrium will increase
with the increase of allele number at one locus; 2) average fitness is negatively correlated with
selective indices of homdzygotes; 3) maintenance of genetic variation in population is benefit to
promotion of its fitness and this may be another reason why there is plentiful genetic polymorphism
in population.

7 The Number of Alleles and Genetic Load of Population
In two-allelic case, the genetic load of population L‘is

L = s1p? + s9¢°. (28)

Derivation : from equation (5) (Kuo 1993), we can get

S1 5182
)2 s 2

L=s + = .
1(-‘31+52 2 s1 + 82 s1+ s2
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In equilibrium, s1p = s2q, thus s; = s39/p; s, = s1p/q. From (29), we get
L = syq, (30)
L =sp. (31)
The equations (30) and (31) are valid only in two-allelic case. In order to extend the two-allelic

case to the n-allelic case, we can derived from equations (6) and (7) in the two-allelic case,

1 1
L=s1p* + 53¢ = (; + g)(sll’2 + 52¢%)%. (32)

From (17) and (21), we can extend the equation (32) in two-allelic case to n-allelic case:

L=s1fl+saff+ - +sifi+ - +s.f2
1 1

1
=(—+—+4 -+ =) f} s+ +safP)?
Gttt )t s+t saf) )
n 1 n
=0 ;)(Z sif])?.
j=17 j=1
Ifsi=s2=---=s,=s,
_s'n o o 4 f2 22 _ 212
L=—(f+f++f+ -+ =ns(Q_1}) (34)
j=1
According to (24), we have
L=s/n. (35)

Equation (35) reveals that the genetic load of population in equilibrium will decrease with
the increase of number of alleles at a locus and positively correlates with selective indices of
homozygotes. The equation (35) is the same in genetic explanation as equation (27).

8 Numerical Relationships among Frequencies of Alleles

In three-allelic case, if s; = s; = s3, then we have

= (s1% + 52¢® + 537%) /51 = p* + ¢* + 17, (36)
§ =510 + 52¢° +53r%) /52 = p* + ¢* 4 1%, (37)

and
P = (sp2+sq2+sr2)/s=p2+q2+r2. (38)

Thus, in equilibrium, p = § = # = 1/3.
In extension to n-allelic case from equation (24), we can get
h=fh=f==fi=1/n (39)
Equation (39) indicates that 1) if selective indices of all homozygote are the same, the
frequencies of all alleles are identical, equalling 1/n; 2) when frequencies of all alleles are equal,
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the average fitness of population is maximised. These results confirm the Lewontin’s conjectures
(1978) theoretically and mathematically. Using both numerical and analytical approach, Lewontin
put forward the following conjectures that multiple alleles could be maintained if, in addition
to heterosis, there was very little variation in fitness among heterozygotes and that the allelic
frequency distribution and equilibrium would be very uniform, with all alleles very close to equal
frequency p = 1/n.
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