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MIXED MODEL APPROACHES FOR
ESTIMATING GENETIC VARIANCES
AND COVARIANCES
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ABSTRACT

The limitations of methods for analysis of variance ( ANOVA )in
¢stivm_ating' genetic variances are discussed. Among the three methods(maximum
fikelihood ML, restricted maximum likelihood REML, and minimum norm
quadratic unbiased estimation MINQUE ) for mixed linear models, MINQUE
method is presented with formulae for estimating variance components and
covariances components and for Predicting genetic effects.Several genetic
r'nodelsv, which cannot be appropriately analyzed by ANOVA methods, are
introduced in forms of mixed linear models,Genetic models with independent
random effects can be analyzed by MINQUE (I ) method which is a MINQUE
method with all prior values setting I, MINQUE () method can give
unbiased estimation for variance components and cOvariance cOmponents,
and linear unbiased prediction ( LUP ) for genetic effects, There are more
complicate gemetic models for plant seeds which involve correlated random
ef'fccts.MINQUE (0,1 ) method. which is a MINQUE method with all prior
c():var_‘i’ances setting 0 and all prior variances setting I, is suitable for
cstimating variance and covariance components in these models,Mixed model
approaches have advantage over ANOVA methods for the capacity of analyzing
unbalanced data and complicated models,Some problems about estimation and
hypothesis test by MINQUE method are discussed,

Key -words: Mixed linear models, MINQUE method, variance and
covariance estimation, random,effect prediction,
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1 INTRODUCTION

Estimating 8enetic variance is of impottance for quantitative Senetic
research as well as for plant and animal breeding, The simplest Eenetic
linear model for partitioning Phenotypic value can be exPressed as

. Yy=u+G-e
with
V)’ = VG+V¢,
where ¥ = phenotyPic value with mean « and variance Vy, = population

mean, G =genotypic value with mean 0 and variance Va, e = nongenetic
effect with mean 0 and variance Ve.

Partitioning of genetic variance ( Va ) for additive ( Va ), dominance ( Vb )
and epistatic (V: ) components was introduced by Fisher *'. Cockerham'®’
further subdivided the epistatic comPonent into additive by additive (Vaa),
additive by dominance (Vap ), and dominance by dominance ( Von ) epistatic
comPonents. Fisher "’ introduced the so-called analysis of variance(ANO‘VA":)‘j
method for estimating variance comDonents from balanced data. Many Eenetic

‘ models were ProPosed for estimating genetic variance comPonents based on
ANOVA methods. Among various mating designs, the nested (Design I) and
factorial ( Design II) desi8ns’ ?’, and the diallel mating designs ® '°’ are

most used by Plant and animal breeders.Variance comDonents in these models
can be estimated by ANOVA methods. ANOVA mecthods are easy to use for
balanced data, Under the normality assumbtion ANOVA estimators are
uniformly minimum variance unbiased, Therefore these methods are still
widely used by breeders and Zeneticists until now.

There are several limitations of ANOVA methods. Unbalanced data
cannot be aPproPriately analyzed by ANOVA methods., Genetic variance
comPonents for some complicated models are not estimable by ANOVA
methods . These limitations could be removed by the new estimation approaches
for mixed linear models when maximum likelihood (ML) method °',restricted
maximum likelihood ( REML ) method'.““, and minimum norm quadratic
unbjased estimation (MINQUE) method '*’ were developed.Among the mixed
model approaches MINQUE method has advantafes of simple computaton,no
requirement for normality distribution, and unbiased estimation as compared
to ML and REML methods, |

2. MINQUE METHOD FOR MODELS WITH INDEPENDENT RANDOM
EFFECTS

Cockerham and Weir’°/ proposed a bio-model of diallel crosses, The
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bio-model provides a way for estimating maternal and paternal variance

components, If other higher-order interaction effects are not included in the

model, the mean oObservation in the k-th block of the cross between maternal

line 7 and paternal line j can be partitioned as
Yije=ldtnitnj+tig+mitpi+beteign

with

2 5.2 2 2 2 2 2
O'y 20ﬂ+ Gi+ Gm+ Up+ Ob+ Oe»

where ¥ijx is the average phenotypic value of individuals from line 7 % line

7 in block k; u is the fixed population mean; n: is the effect of nuclear

contribution of maternal line i, ni~(0,02); ny is the effect of nuclear
contribution of paternal line 7, nj~ (0. 0});ti; is the iﬁteraction effect of
nucle\‘ar contributions of lines 71 xj7, tij~ (0, oi ) s mi is the extranuclear
maternal effect of line 1, mi~ (0, axf‘); pj is the extranuclear paternal
efféét of line 7, pj~ (0, Gf,); by is the effect of block k, bx~(0,0%; €ijk‘

is the residual effect, €iju~ (0, 0%),

If the parents ate inbred lines, Zenetic variance compDonents can be

estimated as Va=20%, Vo= o}, Vu=0l, Vo= 0, V.= 0, Cockerham and
P

Weir 5’ derived ANOVA procedure for estimating genetic variance components
for the bio-model, By the ANOVA method maternal variance component and
paternall variance component still cannot be estimated separately. The

genetic effects are not estimable no matter what kinds of side conditions

< are imposed, Only balanced data for method 3 of diallel mating (excluding

~all parent lines ) can be analyzed by the ANOVA method, There are no

formulae available for method 1 ( including parent lines ) and for half diallel
mating ( method 2 and method 4 )., All these problems can be solved by

the mixed model approaches.
The bio-model of -diallel crosses can be written as a matrix form. of the
mixed model

Yy = 1#+Un€n+Utet+U7mCm+Up€p+Ub€b+€e (2 1)
=lu+ )5: E“f,“-'*-ijeff’v(ﬁ:w’ I,/\,: )% oy U“E“_*-O‘z’l)’
. : = ]

u=1 | u

~
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where Uy is an incidence matrix of known constants, e¢s is a vector of

~

independent random variables with E( eu) = 0 and var ( eu) = g1, and

~

Ues=1I is an identity matrix. Variance components of the mixed model can
~ ~

be estimatod by Solving the following MINQUE edquations for U,v = 1,2,%°,6;

Ctr ( Uy QUUSQU) Jo = (y' QUulUu’ Qe y3, (2.2)
where |
6 -
Ve= 2 @uUw Ud' with inverse V_ ,

U=

4
oa: PR L BN G 12 A B Tk B A

~

Although the estimates ¢ ° depend on prior values @, they are unbiased,

provided that the choice of @ does not depend on the data, Because & is a

~

vector of known values,variance components can be estimated non-iteratively,

The prior values @ may be chosen from prior experiments, from iterations or
~

theoretical considerations. MINQUE (I ) as a MINQUE method with f, =i
can be employed for estimating variance components,

Methods of estimating covariance componentis were DProposed for the
MINQUE procedure '®’, Those methods involve extensive computations and
have been put to litile use in practice. A much simpler MINQUE procedure
for estimating covariance components can be derived for the mixed model

(2,1) .The covariance matrix of two variables ¥y« and ¥» with equal design

8 .
. . u.us . .
matrices is Vb = X 0s-/5-. 2" where vsiyb, is the covariance component
"~
y=1

for the v-th random factor. By MINQUE theory the expectation of the

14
quadratic function ¥ . Q.U U/ Quys is

~ ~ o~

6
tI‘(QUuUu QaVa/b*“ 2 Ous/by '[I‘(Uu OaUUr QUnw),

.~ NN — .~ S N ~~ ~
v=1

Invariant and unbiased estimators of covariance components o @/v can then
be obtained by solving the following system of eguations

Etr(Uu’Q UvUr/QUu)]Ua/b—[y/QUuUu Qs Yu ) (2.3

~ I Ay~ ~ "~
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The matrices Etr(Uu’QLUNFUv’ Q«Uu) Jand Us Q. are the same for both

variance and covariance estimation. Therefore they can be stored for later
recall to estimate variances and covariances for multiple traits.

In animal breeding, estimated variance components are often used for
predicting genetic merits in selection programs. For the mixed model ¢ 2.1y,
;he best linear unbiasel prediction(BLUP '!’) for the u-th vector of random
genetic effects can be obtained by,

- A o,
iu(o;) Uuyuz (;’{",ﬂ” ) = Tu UuNQ;uv’

swhere © = (1’ V'l,lv)"l ’v'uy,

Q_V -V lUv-tily - 'y,

The BLUP needs known variances. Since the true variances are unknown
in practice, unbiased estimates could be used in prediction. The unknown
variances can also be replaced by prior values from prior experiment or from

reasonable guesses, Therefore the genetic effects can be predicted by choosing

~ /7
prior values a as in the case of MINQUE method, ¢ uw,: =02uU_ Q.¥,

~ ~

Monte Carlo simulations showel that variance components and covariance
components can be efficiently estimated with negligible bias by the MINQUE
(1) procedure. Even unbalanced data from diallel mating can be estimated
as efficiently as balanced data if they have similar experiment sizes., The
MINQUE (1) procedure can give liner unbiased prediction ( LUP) for random

xgenetic effects almost as good as the BLUP,

All the linear models for ANOVA methods have a restriction that
coefficients for the random effects should be integer ( most being I or 0) .
But some real genetic models with biological accuracy are mixed linear
models with decimal coefficients, These models cannot be analyzed by the
ANOVA methods, Mixed mocel approaches are tbe only procedures which

‘can give unbiased estimation for variance conponents and covariance
components ,

In quantitative genetic analysis epistatic variance ccmPonents are more
difficult to estimate than additive and dominance variance components by
the ANOVA method, When applying Cockerham’s general genetic model’ *’,
_ghu( 1*) proposed mating designs of modified diallel crosses for estimating
additive by additive epistatic variance component, Cne of the modified

djallel mating systems consists of Fi’s and F.’s, The other mating system
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involves backcrosses(BC’s)in place of F:’s, The assumptions of the Zenetic
model are ( I ) regular diploid segregation; (2) randomly selected inbred .
parents; (3 ) no linkage; (f) no extranuclear effects; (5) no genotybe by
environment interaction. The model can be expressed as ’
Y1ijx=HU+Gij+bx+error, _ S .
where the total genotypic effect Gi; depends on the specific genetic chtry,;
for F, of linc ¢ % line j: v
' Gij(Fiij) =4i+A5+Diij+AA i+ AA3534+2AA4:
for I, of line : X line j: . _
Giy(Fyi3) =4i4+A3;4+0.25D; i+0.25Djj~-‘§-0.5Di g+ A4 F A4+ 2445
and for backcross (BC) of F1i; xline 5. 'l ,
G, (BC)=0.54:+1.54:40.50;140.50: 14 0.2544 42,2544 +1.544; .
In this genetic model A: is the cumulative additive effect from line:; A4 is
the cumulative additive effect from line j; D is the cumulative dominance’

effect from the cross of line 7 X line 73 and AA4;: is the cumulative epistatic 'b

effect from line i X line 7,

The mixed linear model can be written in a matrix form for all the

eniries of Fi1’s, and F;’s Cor BC’s ),

y= 1 u+Un €a+Up Sp+UnsrCar+Us ot C (2.4)
with the variance-covariance matrix for entries of the mating design
/ / 7 /
rar-C y) =UAU, O:+UDUD OR+UANU pp 05a+UBU, ob+10°,

All the effects except the constant # are indepencent random effects.

Genetic variance components can be directly estimated by Va= 203, Vp=0p,

Vaan= {40%,, and V.=0%, without using covariances of relatives. As for the
diallel crosses, four methods can be chosen for the modified diallel crosses;
In the modified diallel mating system, the segregating generation F: is .
included for self-pollinated crops or BC for cross-pollinated crops and
animals, Monte Carlo simulations showed that variance components could

be well estimated by six-parent modified diallel crosses,

3. MINQUE METHOD FOR MODELS WITH CORRELATED RANDOM
EFFECTS

An understanding of inheritance for characteristics and nutrition conteng
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of seeds is important to plant breeling for improvemeat of yield potential
and seed quality. Since maternal plants supply assimilates for seei filling,
and since the photosynthetic activity of the maternal plaant is determined
by the maternal nuclear genes and cytoplasmic genes, a real genetic model
should consist of maternal genetic effects and cytoplasmic effects along with
direct genetic effects, Seel nuclear genes are derived partly from maternal
plants. The genetic model;for seed traits should include covariances tetween
nuclear genetic effects and maternal genetic effects,

Another restriction of ANOVA methods is that all the random effects
are not correlated to each other, ANOVA methods cannot handle linear
models with correlated random effects, Therefore some complicated models
such as the genetic models for seed traits could not be approached by ANOVA
methods, MINQUE methods are good candidates for estimaton of variance
and covariance componenis of mixed models with correlated random effects,

A genetic model is proposed for quantitative traits of diploid seeds
uncer the assumptions of no paternal effects, constant inheritance of
cytoplasmic genes through maternal lines only, no epistatic effects, anl no
genotypPe by environment interaction. Modified diallel crosses consisting of
Fi’s and reciprocal Fi’s from a sct of completely inbred lines, and
backcrosses of F1 to their two parents are used in the genetic model for
diploid plant seeds with cytoplasmic and maternal effects, This model is
also suitable for quantitative traits of animal offspring, The genetic models
can be written as a linear model for the mcan observation in the /-th block
of the k-th type of genetic entry from line 7/ and line 7,

¥ox1=44+G x+bite v,
ax}d the total genetic efffect G.;k depends on the specific genetic entrys
for F1:  from maternal line { X paternal line j (k=1),

Giiin=Ai+A4 +Di:+C . +24m.+Dm; :,
for backcross BC: from maiernal F1:: X paternal line 1 (k=2),

Giia=1.54 +0.54 4+0.5D..40.5D, +C . +Am.+Am +Dm.;,
and for backcross BC; from maternal Iy ; % paternal line j (k=3).

Gijs=0.54 +1,54:+0.5D +0.5D: +C +A4m. +Am +Dmi;

The genctic effects in the model are defined as follows: A is the cumulative

additive effect of direct genes from line 1, 4.~ (0, o%); the cumulative
dominance effect of direct genes is D. ~ (0, '012)) s the cytoplasmic effect

is C.~ (o, o7 ) s the cumulative additive effect of maternal genes is Am i~

Eeid
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(0, o%_.) s and the cumulative dominance effect of maternal genes is Dm::

~ (0, 0} ). There are covariances between direct genes and maternal genes,

cov(A, Am:) =oa.am and cov(Di., Dmi:) =0p.pm.

This modified diallel crosses with F:.’s, reciprocal Fi’s and their
backcrosses are suitable for cross-pollinated crops, For some self-pollinated
crops, F, seed can te easily obtained from F, plants, F, can then. be
included in the genetic mo&el, and the total genetic effect for Foi; Ck=4)1is

GiiW=Ai+Ai+.25Dii+.25Di i+ .5Di i +Ci+Ami+Ami+Dmi i,

Genetic models are also suggested for quantitative traits of  triploid
endosperm with nuclear genetic effects, cytoplasmic effects, and maternal
genetic effects. If high-order dominance effects of three-allele interaction
are negligible or not much concerned in practice, a reduced genetic model.
can be employed., The reduced genetic model can be written as a -linear .
model for the mean observation in the /-th block of the k-th type of genetic
entry from lines i, /:

Yyiixi=U+Giietbiteiix,
where the total genetic effect G:ix depends on specific genetic entry of
endosperms, For inbred line Pi (i=j)and F.i; (i#j) from maternal
P xpaternal P: Ck=1):

Gii1=2A+A4,+D:ii+2D:;+Ci+2Ami+Dmii,
for Foi; (k=2):

Gijs=1544+1.54;+D:ii+D;;+Di;+Ci+Ami+Am;+Dmi;.

These two genetic models can be written in a matrix form for all entries -

of the mating design,

y=1u+Unr ea+Upep+Ucec+UAm+€Am+ Ubdmepm

~

7
+Ub(3b+ Ee ™ 1/t+ Y Uwen (3,1)

with the variance-covariance matrix

/ / 7
var (y) = ox UaUr+ ofUpUp+ 0iUc Ug
v 1 2 - 2 !
+ OAmUAmUAm-I— bm UDmUDm+ 0y Us Ub
o ' ’ ’
+0a A CUA Upp+ UanU )4 0p.0m ) UnUp,,+Ubn Uy )

2
+ OiI = 3 guVu:V.
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where Uu is the known incidence matrix relating to the random vector eu~ (0 ,
; 4
ogl dtor u=1, 2, w, 75 Vu=UsU, for u=1, 2, 65 Vo= (U ULHU,

4 4 /
Uid, Vo= (U Us+UsU,), and Vo= U, =1. For diploid seeds in modified

diallel crosses from inbred lines, nuclear genetic variance components can

be estimated by Va=20%, Vp= o%. Maternal genetic variance components are

Vam= ZOim, VDmZUém. Genetic variance components for triploid endosperm

. 2 - 2 2 2 7
can be estimated by Va =30y, Vp=305, Vo= 0f, Vam = 202 and Vom=0} .

MINQUE (0,°1) procedure is a MINQUE method with 0 for all the prior
covariances and 1 for all the prior variances.The MINQUE (0/1) procedure is

efficient and unbiased for estimating variance and covariance components by mixed

models with correlated random factors.Estimators of variance and covariance

components ¢ for these genetic models can be obtained by solving the

following MINQUE (0/1) equations for u, v=1, 2, v, 9,

Ctr C Qeo/1vVu Oro/j1 Vo)) 6= Cy¥'Quo/vVu Quoriryd, (3.2)
where
6 Vi -1
V('O/l ;= P UuUu —:‘ I s VVith il’lVCrSC V( 0/1) ’

=

Qio/is=Viayu = Vi LC UV 1) Y7L .

The invariant and unbiased estimators of covariance components (;‘a /b
between trait a and trait b with equal design matrices can also be obtained
by solving the following system of equations for u , v=1, 2, 9

Ctr (g(o/l ;Zu NQ(O/“K') ]éj/bz [3:g‘n/l’zug(°/‘%b] , o (3.3)
whefe /yv and {/Vb are vectors of mean observations for two traits, By the

MINQUE (0,1 ) procedure, a linear unbiaSed prediction ( LUP ) for the u-th

. ~ z
random genetic factor can be obtained by ¢ u /1 = U,0¢0/1.:y for u <5,
4, DISCUSSION

Mixed models can be approaches by three major methods ML, REML,

and MINQUE, ML tends to 8ive biased estimates for some variance
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components, -In most cases REML give estimates similar to MINQUE
estimates, Both ML ani REML reduire iterations., For mixed models with
balancel data several iterations may be enou8h. But in some rare cases
iterations might not couvere, MINQUE method is a non-iterative procedure,
MINQUE method is superior to ML and REML for its simplc computation
and unbiased estimation.

As compared with ANGVA methods, ML, REML, and MINQUE methods involve
matrix al8ebra with much more complicated computation. It is only recent
event of applying these methods in estimating EZenetic variance components.
When more Zenetic models with biological accuracy are developed and abPPlied
in Plant and animal breeding, inheritance of quantitative traits will be
better understood,

By the MINQUE method negative estimates of variance comPonents are
not unusual, When using constrains of setting all the negative estimates to
be zero, unbiaselness is 1no longer Suaranteed. Although MINQUE method
works well in 8eneral, not all mixed models can be well  estimated by
MINQUE method, If a 8enetic mating design results in a mixed model with
‘some incidence Cesign matrices ceing functions of other matrices, the left
matrix in (2.2)or (3.2) will be singular. Hence variance compPonents are
not estimable without using general inverse, Some unbalanced data structures
may also result in singular matrices in (2.2) or (3.2). Therefore new 3
genetic models should be proved by Monte Carlo simulatons for unbiasedness
and efficiency vefore they can be usel in practice. Some unbalanced mating

design are also needed for checking if variance comPcnents are estimable,

When varianec combPonents and covmiancé comPonents have been estimated,
statistic tests are usually followed for detecting their significance. Sampiing
variances of estimates are needed for hybPothesis tests. AsympPtotic samPling
variances of estimates can be obtained by formulae of ML, REML, and
MINQUE methocs, A much simpler procedure of cstmation of sampling

variances is jackknifing L2 If f is an estimate of a genetic Parameter

. . : is the estimate resulting when
from a sample of K observations, and 0 (x, ° g

obesrvation k is omitted, then the k-th pseudoValue is Ju ( (7) = Ka—— (K—1)

é k1. The jackknife estimator JC ) of parameter # is the mean of

the pseudovalues, If K is not iarge, (J(C8)—8) SSEC] (8 ) ) is

aparoximately distriputed as a I-distribution with ( K-— I ) degrees of freedom,
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